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Off-shell Bethe ansatz equations and N-point correlators in 
the SU(2) wzww theory 

H M Babujiant 
Physikalisches Instihd der Univenitit BOM, Nussallee 12. D-53115 Bonn, Federal Republic 
of Germany 

Received 29 July 1993 

Abstract. We prove thak the wavevectors  of^ the off-shell Bethe ansaa equation for the 
inhomogeneous SlJ(2) lattice vertex model render in the quasiclassical limit the solutions of the 
Knizhnik-Zamolodchikov equation. 

1. Introduction 

There exists a rather large class of integrable vertex models in 2D statistical mechanics, 
and among them many are gapless. The long-range behaviour of these gapless models is 
described by conformal field theories (m). The finite size resolution of the Bethe ansatz 
equations provides the values of the central charge and the conformal dimensions for the 
CFTS corresponding to integrable vertex models [l]. It is well known, that the Yang-Baxter 
equation plays the central role in constructing an integrable vertex model in 2D statistical 
mechanics. With each simple Lie algebra is associated a solution of the Yang-Baxter 
equation and with it is given an integrable vertex model. Most results so far obtained 
are related to homogeneous vertex models. We will consider in this note, instead, an 
inhomogeneous vertex model. There is, in the case of inhomogeneous models, associated 
with each vertex besides the spectral parameter h also a disorder parameter z (one for 
each side). The vertex weight matrix R depends on A - z. The transfer-matrix of the 
vertex model thus depends on disorder parameter z;, i = 1,2, . . . , N .  Transfer-matrices 
with different values of spectral parameter h commute with each other [2-4], which means 
that the models are integrable (section 2). The purpose of this article is to investigate 
the connection between the integrable inhomogeneous vertex model and conformal field 
theory. The main ingredient of OUT approach will be the wavevector O(hlhzr . . . ,A,) of 
the algebraic Bethe ansatz satisfying, by construction, an equation of the form 151 

Here T(h)  denotes the transfer matrix of the vertex model acting on an N-fold tensor 
product of SU(2) representation spaces. 

Where Ow = O(h1,. ..h,-l, h,h,+i,  ..., An), i.e. in Omha is replaced by A. 
Fa@*, . . .A,) and A(h,  A I ,  . . .An) are c numbers (section 2). The vanishing of the so-called 
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‘unwanted terms’ (the last term on the RHS of (1.1)) is enforced in the usual procedure of 
the Bethe ansatz by choosing the parameters hl, . . . , A, s.t. the functions Fa vanish. Q, 
then becomes an eigenvector of the transfer matrix with eigenvalue A(&, AI  ... A,). We 
will, however, not impose these ‘mass shell’ conditions. For us the ‘unwanted’ terms we 
wanted. We call (1.1) the off-shell-Bethe-ansatz equation (OSBAE). Note that all the objects 
in the OSBAE (1.1) depend on the disorder parameters ZI, . . . , Z N .  Our main purpose in 
this article is to uncover a neat relationship between the wavevectors satisfying the OSBAE 
(1.1) and vector-valued solutions of the Knizhnik-Zamolodchikov (U) equation. The latter 
linear differential equation is of the form [6] 

The variables z,, . . . , Z N  will be related to the disorder parameters of the Bethe ansatz. 
, / r ( z l ,  . . . , ZN) is a vector in the tensor product of spaces V(’) ~3 V(’) 8 . . . V ( N ) ,  where 
V(i) i  = 1 , .  . . , N are representation spaces of the simple algebra g. The tp(a = 
1,2, . . . , dimg) represent the Hermitian generators of the algebra g and act non-trivially on 
V(j),  K = 1/2(Cv + K) and SUbCv = ycdfbcd (f”” denoting the structure constants of the 
algebra g). K i s  the central charge of the Kac-Moody algebra. In this article we consider 
equation (1.2) only for the group SCJ(2). The starting point of our work is the Yang- 
Baxter equation. We construct inhomogeneous vertex models with the disorder parameters 
(zi} using SCJ(2) invariant rational solutions of the Yang-Baxter equation’(secti0n 2). The 
technique of the algebraic Bethe ansatz will allow us to find vectors @(AI, . . . , A.) satisfying 
(1.1) (section 2). The solution of the Yang-Baxter equation and OSBAE depend on a 
parameter 7 (Planck-type constant). Section 3 is devoted to a discussion of the quasiclassical 
limit I) + 0 of the OSBAE, which is identified with a spin wave problem treated by Gaudin 
[I 11 some time ago. In section 4 we ConStIUct from @(A,, . , . ,An)  a solution of the KZ 
equation. This article is a revised version of [12], which was circulated three years ago. 
The identification of the Gaudin spin problem with the quasiclassical limit of the general 
Bethe ansatz problem is a new result. 

2. Inhomogeneous vertex model 

Let us consider a two-dimensions! M x N lattice with N t 1, in general different, types of 
spin variables placed in the following manner inhomogeneously on the links ,of the lattice; 
on ali horizontal links are spin variables U taking values ki. The variables in the j t h  
column j = 1,2, . . . N take values of an SU(2) representation with spin sj.  The interaction 
takes place only between spins located on neighbouring links and is described by the vertex 
weight matrix R f t ( h  - z ) ;  h here is the usual spectral parameter, z is a local disorder 
parameter associated with the particular bond. Cyclic boundary conditions are imposed. 
We use the SU(Zj invariant solution of the Yang-Baxter equation [7] 

(2.1) R”(A -p)sR’3(A-~)sR2301.- Z )  = s R u ( ~ - z ) s R 1 3 ( h - ~ ) o R  I2 (A-p)  
0 

where ,R”(A) is the vertex weight matrix of the XXX-model with spin i [8]: 
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and 

U = (U ' ,  U', u3) are Pauli matrices, S = (SI, S2, S3) denotes an operator of arbitrary spin, 
I ' ,  I' are unit operators in the respective representation spaces (corresponding to spin and 
s, respectively). The solution (2.3) has been used in connection with the Kondo problem 
[9] and also in the exact solution of the XXX-model with arbitrary spin [7]. The parameter 
7~ in the R-matrices (2.2), (2.3), supplies the quasiclassical expansion 

(2.4) 

The monodromy operator and transfer-matrix are given in terms of the R-matrices (2.3) by 

I 2  R'*(h., v)l9=o = I @ I  . 

J ( A ,  z )  = R O ~ ( A  - zlU)~ON-'(h - z N W 1 ) .  . . RO'(~ - zl) 

T(h ,  2 )  = troJ(h. z).  (2.5) 

In (2.5) the trace is taken in the horizontal two-dimensional space 0 and 

operators Sk act in the vertical space V") and (Sk)' = sk(sk+') .  One infers from (2.1) for 
the monodromy operator J ( h ,  z )  the relation 

oR''(A-p)(J'(A,z) @ J 2 ( p , z ) )  = ( J * ( p , z )  @ J ' ( ~ , Z ) ) ~ R ~ ~ C - , U ) .  (2.7) 

.Due to the fact that T(h ,  z) = troJ(h, z )  we have a family of commuting transfer matrices 
as in the homogeneous case 

(2.8) [T@,  z ) ,  T(P,  z)l = 0. 

It is possible to diagonalize the transfer matrix T(h ,  z) by the algebraic Bethe ansatz [5], in 
just the same way as in the homogeneous case [7,9]. ,Here, we describe this diagonalization. 
Let the operators A(h,  z ) ,  B(h. z), C(h; z ) ,  D(h,  z )  be given by 

The matrix ,R@) in (2.7) can be represented as 

v 
~ 1 0 0 0  b(h) = - 

v - h  
~~ h 

c(h) = - 
h - v  

- ,R(h)= (; ; ;) 
0 0 0 1  
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Let us consider the highest weight factor 

IQ) = I S ~ , S ~ ) ~ I S Z  .sz)~...~~sN,~N)s:~~i,si) =~i~~i,si) 

We have the following well-known relations for the elements of the monodromy matrix: 

(2.13) 

(2.14) 

N 
D(Lz)IQ) = n ( 1 -  9 ( V ~ i ) l Q )  (2.15) 

C(h,  z)lQ) = 0. (2.16) 

i=l 

In (2.15) and (2.16) Pi@) = 2q/(q - 2(h - a)) .  The Bethe wavefunction is 

n 

@(hi, hz, ... L: {zI) = n W L  z)lQ). (2.17) 

Using (2.12)-(2.13) and (2.15)-(2.37), we find the action of the transfer matrix T(h,  z )  = 
A@, z) + D(A,  z) on the Bethe vector 0: 

U=l 

where 

(2.18) 

(2.19) 

(2.20) 

= @(A,, hz, ... &-I, h, . ..An). (2.21) 

In (2.22) A, is replaced by h in @a or in other words B(ha, z )  is replaced by B(A, z). The 
next step in the traditional Bethe ansatz procedure would consist in imposing the vanishing 
of the so-called 'unwanted' term (the second term in (2.19)). This is achieved through an 
appropriate choice of the paramete= A I ,  . . . A, s.t. the functions F. vanishes. One arrives 
at the true eigenvalue equation 

(2.22) 

The Bethe ansatz equations F, = 0 classify the eigenvectors and eigenvalues of the operator 
T ( h ,  z). One can say that when the Bethe ansatz equations Fa = 0 are satisfied, the Bethe 
wavefunction is on the mass shell. If the condition Fa = 0 is not imposed, then, in general, 
we have the equation (2.19), and the Bethe wavefunction is off the mass shell. In this case 
we call equation (2.19) the off-shell Bethe ansatz equation (OSBAE). 

T ( h ,  ~ ) 0  = A@, hi, hz, ... An)@. 



Off-shell Bethe ansatz equations 6985 

3. The quasiclassical limit of OSBAE and non-local Gaudin Hamiltonians 

By quasiclassical expansion one commonly understands the expansion of the vertex weight 
R(h, q) around some point 70. such, that R(h, qo) = I @ I [lo]. In this case one can 
parameterize q so that qo = 0. In this section we calculate the quasiclassical l i t  of the 
OSBAE (2.19). Let us start from calculation of the T ( h , z )  which, besides the parameters 
h, zj, depends also on q. In the homogeneous case (zz = 0) we have, for the rational 
solution of the Yang-Baxter equation, essentially the same structure in the limits q + 0 
and h + ca. In the inhomogeneous case we have another situation, because the dependence 
on zi is additive with h. 

For the power series expansion T(h ,  z) around the point q = 0 

follows from (2.8) that 

[Tk(h,Z), ~ . ( f i ,  Z)I = o ~ , k ,  m = 0,1,2. .  . (3.2) 
k+m=l 

which means the existence of the integrable subsystem in~the quasiclassical series (3.1). It 
is interesting to note that the operators %(A, z) in general do not commute with T(h ,  2). In 
order to find a quasiclassical expansion, we represent the R-matrices (2.6) in the following 
form: 

At q << 1 we have 

(3.3) 

(3.4) 

Substituting the first term from (3.5) into (3.3), we find the classical r-matrix [IO]. From 
(3.3) and (3.4) we obtain the quasiclassical expansion of the monodromy operators J ( h ,  z) 
(with accuracy O(q3)) 

(3.5) 

Simple calculations give us 
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In (3.6X3.9) 

N 

I = 
i=1 

and also we use the following notation 

(3.10) 

where Sa = (SI, S2, S3) and S*(A, i) = SI@, z) i iS2(h, z). For the transfer matrix 
T(A, z) = A(A, z) + D(Az) we have 

(3.1 1) 

(3.12) 

One can see from (3.1) and (3.11) that TO(*, z) = 21, TI(*, z) = 0 and the second term in 
(3.11) is equal to Tz(A, z). It is obvious that the operators Hj commute as a consequence 
of equation (3.2). Then we can calculate with (3.6H3.9) the quasiclassical limits of the 
objects (2.20)-(2.22): 

n 

@(Ai ,Az .  ... A.) = ( - i l ) " n S - ( A , , z ) l ~ ) + O ( i l n + ' )  (3.13) 
cl=l 

(3.14) 

(3.15) 

Substituting now (3.13)-(3.16) and (3.11) into (2.19) and combining the terms proportional 
to q"+', we obtain the first non-trivial consequence of OSBAE (2.19) in the quasiclassical 
limit 

(3.17) 
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Here the vectors p and pa from (3.14) and (3.16) are proportional to q* in (3.14) and~(3.15), 
respectively. Taking the residue in the pole h = zj of (3.17) we have 

where 

(3.18) 

(3.19) 

(3.20) 

(3.21) 

In (3.18) we define the vector rpL;p = S-(h,,z)pL, i.e. in the vector p: the operator 
S-(h,, z )   is omitted. Equations (3.18) and (3.19)-(3.21) reproduce Gaudin’s results [ll], 
which he found by considering the spectral problem for the set of operators Hj. From 
(3.1Q43.21) it also follows that the Gaudin method is, in fact, a quasiclassical version of 
the algebraic Bethe ansatz. If in (3.18) we impose the condition fa = 0, then we obtain p 
as an eigenvector of the operators Hj with eigenvalues hi. Parameters hl, . ... A, have to be 
found from the quasiclassical Bethe ansatz equations fu = 0. 

4. The integral representation for the N-point correlators in WZNW theory 

Let us introduce the function ~ ( h ,  z) = ~ ( h , ,  ..., h,, Z I ,  . . . , Z N )  obeying the following 
differential relations [I21 

where K = 1/2(k + 2 )  (in the case SU(2)Cv = 2) .  Taking into account (3.19) and (3.20) it 
is easy to verify that &e zero curvature conditions are fulfilled dhj/dX, = df,/dzj. 

The solution of (4.1) and (4.2) is 

N n 
X(h, Z )  = n(Z, - Zj)s’sJ’* n(& -hB)”“n(Zk (4.3) 

icj ac5 k y  

We define vector function V(z1 , , .ZN) through multiple,contour integrals as follows [12] 

~ ( z I , .  . .ZN) = f.. . f ~ ( h ,  z)&, z ) d h l , .  . . , dh,. (4.4) 
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The integrations are to be taken here over canonical cycles of the space X = C”-U(A, = 2;) 
with coefficients from S; dual to the local system SA, that is defined by the monodromy 
group of the function x(h, 2). It is now rather straightforyard to show that the vector 
function Y(z1, . . . , ZN) defined above is the solution of KZ equation (1.2). Substituting 
(4.5) into KZ equation (1.2) using OSBAE (3.18) and the defining relations for ,y (4.1), we 
find 

Taking into account (4.2) and the identity which follows directly from (3.21) 

one easily verifies that (4.6) boils down to the relation 

It is evident that this equation is satisfied, because the contours are closed. Now we want 
to show that q ( z l  . . . ZN) is a singlet with respect to the global SU(2)  161 

hl  

(4.7) 

Equation (4.7) can easily be verified if we take into account the relation 

(4.9) 3 [S , S-(A, 2)l = -S-(h, 2) .  

We have 

S3* = f.. . $[ $ s j  - n]xvdA~, . . . , dh, = 0 (4.10) 

since we now impose the condition 

In order to verify (4.8) we present the Bethe wavefunction (0 in the correlation functions 
(4.5) in more explicit form. It is indeed given by a sum of integrals of the Aomot4elfand 
type [13,141 



Off-shell Bethe ansatz equations 6989 

Where k, = 1.2, . . . , N .  Aomoto had studied such integrals in connection with general 
hypergeometric functions. It follows from his work that we can take such cycreS (contours) 
where the integral will be completely symmetric under the permutation of any A,. In 
this case it will not depend on kl , . . . , k, in (4.13), i.e. on repetitions of a given z in the 
denominator of the integrand. So, we denote these integrals x~~...~~~~,,...~~); where the qi are 
repetition numbers of given z in the denominator of (4.13). We can represent U, in the form 

(4.12) 

We have then 

Taking into account the commutation relation 

[p, (S-)'I = k(S-)k-'(2S3 + 1 -k) 

we obtain 

or equivalently 

(4.15) 

This coincides with one of Aomoto's identities for general hypergeometric functions [13) 
The formula (4.14) establishes the relationship between our approach and that of other 
authors [15-IS]. In order to calculate specific correlation functions, as in [6,19], i.e. the 
correlation function of primary fields 02, (zi) ,  mi = -si . . .si 

(Q;,(z l )@:,(zr) . .  . Q q Z "  (4.16) 

it is necessary to multiply Y (21, . . . , Z N )  from the left-hand side by the vector 

(mlxsll @ (m2r @ .. , @ (mN,SNI 

where (mi. sil is defined as 

(mi,si l$ =mi(mi,siI 

where y e  have the relation 

(Q21(zi)Q22(zd .. . a i M ( z j v ) )  = (mi.siI @ (mz,szI B . .  . @ (m.v, SjvIqki, ZZ.. . zN) .  
(4.17) 

For full conformity with the WZW theory in equations (4.1)-(4.2) we take K = 1/2(k+2). 
However, it is clear, that our construction allows us to work with arbitrary K. So the 
inhomogeneous vertex model with transfer matrix T(A.  z )  and OSBAE generate the correlators 
of the wzw theory. 
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5. Conclusions and speculation 

Many connections have been established in past years relating integrable spin models and 
ZD CFT. The main result of this paper consists in adding another link in this direction: 
the solutions of the rational SU(2) Kz equation are identified modulo a scalar integrating 
factor with a Bethe wavevector of the algebraic Bethe ansatz for an inhomogeneous vertex 
model in quasiclassical limit. It has to be stressed that the connection exists between the Kz 
equation and the off-shell Bethe ansatz equation. It should be noted that the quasiclassical 
expansion can be reinterpreted as high-temperature expansion of a lattice vertex model, 
because the leading term of this expansion corresponds to maximal entropy of the lattice 
vertex model. 

We find it rather likely in considering the structure of OSBAE that general Bethe wave 
vectors (beyond the quasiclassical limit) will give the solutions of quantum KZ equations of 
rational type. Related results for the trigonometric quantum Kz equations a ~ e  due to Matsuo 
[201 and Reshetikhin [211. 
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